3.4.64 \(\int \frac {\sqrt {d+e x^2}}{x^2 (a+b x^2+c x^4)} \, dx\) [364]

3.4.64.1 Optimal result
3.4.64.2 Mathematica [C] (verified)
3.4.64.3 Rubi [A] (verified)
3.4.64.4 Maple [A] (verified)
3.4.64.5 Fricas [B] (verification not implemented)
3.4.64.6 Sympy [F]
3.4.64.7 Maxima [F]
3.4.64.8 Giac [F(-1)]
3.4.64.9 Mupad [F(-1)]

3.4.64.1 Optimal result

Integrand size = 29, antiderivative size = 291 \[ \int \frac {\sqrt {d+e x^2}}{x^2 \left (a+b x^2+c x^4\right )} \, dx=-\frac {\sqrt {d+e x^2}}{a x}-\frac {c \left (d+\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e} x}{\sqrt {b-\sqrt {b^2-4 a c}} \sqrt {d+e x^2}}\right )}{a \sqrt {b-\sqrt {b^2-4 a c}} \sqrt {2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e}}-\frac {c \left (d-\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e} x}{\sqrt {b+\sqrt {b^2-4 a c}} \sqrt {d+e x^2}}\right )}{a \sqrt {b+\sqrt {b^2-4 a c}} \sqrt {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}} \]

output
-(e*x^2+d)^(1/2)/a/x-c*arctan(x*(2*c*d-e*(b-(-4*a*c+b^2)^(1/2)))^(1/2)/(e* 
x^2+d)^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2))*(d+(-2*a*e+b*d)/(-4*a*c+b^2)^(1 
/2))/a/(2*c*d-e*(b-(-4*a*c+b^2)^(1/2)))^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2) 
-c*arctan(x*(2*c*d-e*(b+(-4*a*c+b^2)^(1/2)))^(1/2)/(e*x^2+d)^(1/2)/(b+(-4* 
a*c+b^2)^(1/2))^(1/2))*(d+(2*a*e-b*d)/(-4*a*c+b^2)^(1/2))/a/(b+(-4*a*c+b^2 
)^(1/2))^(1/2)/(2*c*d-e*(b+(-4*a*c+b^2)^(1/2)))^(1/2)
 
3.4.64.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.73 (sec) , antiderivative size = 626, normalized size of antiderivative = 2.15 \[ \int \frac {\sqrt {d+e x^2}}{x^2 \left (a+b x^2+c x^4\right )} \, dx=-\frac {\sqrt {d+e x^2}}{a x}+\frac {\text {RootSum}\left [a e^4+4 b d e^2 \text {$\#$1}^2-4 a e^3 \text {$\#$1}^2+16 c d^2 \text {$\#$1}^4-8 b d e \text {$\#$1}^4+6 a e^2 \text {$\#$1}^4+4 b d \text {$\#$1}^6-4 a e \text {$\#$1}^6+a \text {$\#$1}^8\&,\frac {b d e^3 \log (x)-a e^4 \log (x)-b d e^3 \log \left (-\sqrt {d}+\sqrt {d+e x^2}-x \text {$\#$1}\right )+a e^4 \log \left (-\sqrt {d}+\sqrt {d+e x^2}-x \text {$\#$1}\right )+4 c d^2 e \log (x) \text {$\#$1}^2-3 b d e^2 \log (x) \text {$\#$1}^2+3 a e^3 \log (x) \text {$\#$1}^2-4 c d^2 e \log \left (-\sqrt {d}+\sqrt {d+e x^2}-x \text {$\#$1}\right ) \text {$\#$1}^2+3 b d e^2 \log \left (-\sqrt {d}+\sqrt {d+e x^2}-x \text {$\#$1}\right ) \text {$\#$1}^2-3 a e^3 \log \left (-\sqrt {d}+\sqrt {d+e x^2}-x \text {$\#$1}\right ) \text {$\#$1}^2-4 c d^2 \log (x) \text {$\#$1}^4+3 b d e \log (x) \text {$\#$1}^4-3 a e^2 \log (x) \text {$\#$1}^4+4 c d^2 \log \left (-\sqrt {d}+\sqrt {d+e x^2}-x \text {$\#$1}\right ) \text {$\#$1}^4-3 b d e \log \left (-\sqrt {d}+\sqrt {d+e x^2}-x \text {$\#$1}\right ) \text {$\#$1}^4+3 a e^2 \log \left (-\sqrt {d}+\sqrt {d+e x^2}-x \text {$\#$1}\right ) \text {$\#$1}^4-b d \log (x) \text {$\#$1}^6+a e \log (x) \text {$\#$1}^6+b d \log \left (-\sqrt {d}+\sqrt {d+e x^2}-x \text {$\#$1}\right ) \text {$\#$1}^6-a e \log \left (-\sqrt {d}+\sqrt {d+e x^2}-x \text {$\#$1}\right ) \text {$\#$1}^6}{b d e^2 \text {$\#$1}-a e^3 \text {$\#$1}+8 c d^2 \text {$\#$1}^3-4 b d e \text {$\#$1}^3+3 a e^2 \text {$\#$1}^3+3 b d \text {$\#$1}^5-3 a e \text {$\#$1}^5+a \text {$\#$1}^7}\&\right ]}{4 a} \]

input
Integrate[Sqrt[d + e*x^2]/(x^2*(a + b*x^2 + c*x^4)),x]
 
output
-(Sqrt[d + e*x^2]/(a*x)) + RootSum[a*e^4 + 4*b*d*e^2*#1^2 - 4*a*e^3*#1^2 + 
 16*c*d^2*#1^4 - 8*b*d*e*#1^4 + 6*a*e^2*#1^4 + 4*b*d*#1^6 - 4*a*e*#1^6 + a 
*#1^8 & , (b*d*e^3*Log[x] - a*e^4*Log[x] - b*d*e^3*Log[-Sqrt[d] + Sqrt[d + 
 e*x^2] - x*#1] + a*e^4*Log[-Sqrt[d] + Sqrt[d + e*x^2] - x*#1] + 4*c*d^2*e 
*Log[x]*#1^2 - 3*b*d*e^2*Log[x]*#1^2 + 3*a*e^3*Log[x]*#1^2 - 4*c*d^2*e*Log 
[-Sqrt[d] + Sqrt[d + e*x^2] - x*#1]*#1^2 + 3*b*d*e^2*Log[-Sqrt[d] + Sqrt[d 
 + e*x^2] - x*#1]*#1^2 - 3*a*e^3*Log[-Sqrt[d] + Sqrt[d + e*x^2] - x*#1]*#1 
^2 - 4*c*d^2*Log[x]*#1^4 + 3*b*d*e*Log[x]*#1^4 - 3*a*e^2*Log[x]*#1^4 + 4*c 
*d^2*Log[-Sqrt[d] + Sqrt[d + e*x^2] - x*#1]*#1^4 - 3*b*d*e*Log[-Sqrt[d] + 
Sqrt[d + e*x^2] - x*#1]*#1^4 + 3*a*e^2*Log[-Sqrt[d] + Sqrt[d + e*x^2] - x* 
#1]*#1^4 - b*d*Log[x]*#1^6 + a*e*Log[x]*#1^6 + b*d*Log[-Sqrt[d] + Sqrt[d + 
 e*x^2] - x*#1]*#1^6 - a*e*Log[-Sqrt[d] + Sqrt[d + e*x^2] - x*#1]*#1^6)/(b 
*d*e^2*#1 - a*e^3*#1 + 8*c*d^2*#1^3 - 4*b*d*e*#1^3 + 3*a*e^2*#1^3 + 3*b*d* 
#1^5 - 3*a*e*#1^5 + a*#1^7) & ]/(4*a)
 
3.4.64.3 Rubi [A] (verified)

Time = 0.73 (sec) , antiderivative size = 289, normalized size of antiderivative = 0.99, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.138, Rules used = {1618, 242, 2256, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {d+e x^2}}{x^2 \left (a+b x^2+c x^4\right )} \, dx\)

\(\Big \downarrow \) 1618

\(\displaystyle \frac {d \int \frac {1}{x^2 \sqrt {e x^2+d}}dx}{a}-\frac {\int \frac {c d x^2+b d-a e}{\sqrt {e x^2+d} \left (c x^4+b x^2+a\right )}dx}{a}\)

\(\Big \downarrow \) 242

\(\displaystyle -\frac {\int \frac {c d x^2+b d-a e}{\sqrt {e x^2+d} \left (c x^4+b x^2+a\right )}dx}{a}-\frac {\sqrt {d+e x^2}}{a x}\)

\(\Big \downarrow \) 2256

\(\displaystyle -\frac {\int \left (\frac {c d-\frac {c (b d-2 a e)}{\sqrt {b^2-4 a c}}}{\left (2 c x^2+b+\sqrt {b^2-4 a c}\right ) \sqrt {e x^2+d}}+\frac {c d+\frac {c (b d-2 a e)}{\sqrt {b^2-4 a c}}}{\left (2 c x^2+b-\sqrt {b^2-4 a c}\right ) \sqrt {e x^2+d}}\right )dx}{a}-\frac {\sqrt {d+e x^2}}{a x}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\frac {c \left (\frac {b d-2 a e}{\sqrt {b^2-4 a c}}+d\right ) \arctan \left (\frac {x \sqrt {2 c d-e \left (b-\sqrt {b^2-4 a c}\right )}}{\sqrt {b-\sqrt {b^2-4 a c}} \sqrt {d+e x^2}}\right )}{\sqrt {b-\sqrt {b^2-4 a c}} \sqrt {2 c d-e \left (b-\sqrt {b^2-4 a c}\right )}}+\frac {c \left (d-\frac {b d-2 a e}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {x \sqrt {2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}}{\sqrt {\sqrt {b^2-4 a c}+b} \sqrt {d+e x^2}}\right )}{\sqrt {\sqrt {b^2-4 a c}+b} \sqrt {2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}}}{a}-\frac {\sqrt {d+e x^2}}{a x}\)

input
Int[Sqrt[d + e*x^2]/(x^2*(a + b*x^2 + c*x^4)),x]
 
output
-(Sqrt[d + e*x^2]/(a*x)) - ((c*(d + (b*d - 2*a*e)/Sqrt[b^2 - 4*a*c])*ArcTa 
n[(Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]*x)/(Sqrt[b - Sqrt[b^2 - 4*a*c]] 
*Sqrt[d + e*x^2])])/(Sqrt[b - Sqrt[b^2 - 4*a*c]]*Sqrt[2*c*d - (b - Sqrt[b^ 
2 - 4*a*c])*e]) + (c*(d - (b*d - 2*a*e)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2* 
c*d - (b + Sqrt[b^2 - 4*a*c])*e]*x)/(Sqrt[b + Sqrt[b^2 - 4*a*c]]*Sqrt[d + 
e*x^2])])/(Sqrt[b + Sqrt[b^2 - 4*a*c]]*Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c] 
)*e]))/a
 

3.4.64.3.1 Defintions of rubi rules used

rule 242
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c*x)^ 
(m + 1)*((a + b*x^2)^(p + 1)/(a*c*(m + 1))), x] /; FreeQ[{a, b, c, m, p}, x 
] && EqQ[m + 2*p + 3, 0] && NeQ[m, -1]
 

rule 1618
Int[(((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_))/((a_) + (b_.)*(x_)^2 + ( 
c_.)*(x_)^4), x_Symbol] :> Simp[d/a   Int[(f*x)^m*(d + e*x^2)^(q - 1), x], 
x] - Simp[1/(a*f^2)   Int[(f*x)^(m + 2)*(d + e*x^2)^(q - 1)*(Simp[b*d - a*e 
 + c*d*x^2, x]/(a + b*x^2 + c*x^4)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] 
 && NeQ[b^2 - 4*a*c, 0] &&  !IntegerQ[q] && GtQ[q, 0] && LtQ[m, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2256
Int[(Px_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^ 
(p_.), x_Symbol] :> Int[ExpandIntegrand[Px*(d + e*x^2)^q*(a + b*x^2 + c*x^4 
)^p, x], x] /; FreeQ[{a, b, c, d, e, q}, x] && PolyQ[Px, x] && IntegerQ[p]
 
3.4.64.4 Maple [A] (verified)

Time = 0.77 (sec) , antiderivative size = 326, normalized size of antiderivative = 1.12

method result size
risch \(-\frac {\sqrt {e \,x^{2}+d}}{a x}-\frac {\sqrt {2}\, \left (\frac {\left (a b d e +2 d^{2} a c -b^{2} d^{2}+\sqrt {-d^{2} \left (4 a c -b^{2}\right )}\, a e -\sqrt {-d^{2} \left (4 a c -b^{2}\right )}\, b d \right ) \arctan \left (\frac {a \sqrt {e \,x^{2}+d}\, \sqrt {2}}{x \sqrt {\left (-2 a e +b d +\sqrt {-d^{2} \left (4 a c -b^{2}\right )}\right ) a}}\right )}{\sqrt {\left (-2 a e +b d +\sqrt {-d^{2} \left (4 a c -b^{2}\right )}\right ) a}}-\frac {\left (-a b d e -2 d^{2} a c +b^{2} d^{2}+\sqrt {-d^{2} \left (4 a c -b^{2}\right )}\, a e -\sqrt {-d^{2} \left (4 a c -b^{2}\right )}\, b d \right ) \operatorname {arctanh}\left (\frac {a \sqrt {e \,x^{2}+d}\, \sqrt {2}}{x \sqrt {\left (2 a e -b d +\sqrt {-d^{2} \left (4 a c -b^{2}\right )}\right ) a}}\right )}{\sqrt {\left (2 a e -b d +\sqrt {-d^{2} \left (4 a c -b^{2}\right )}\right ) a}}\right )}{2 a \sqrt {-d^{2} \left (4 a c -b^{2}\right )}}\) \(326\)
pseudoelliptic \(\frac {-\frac {\sqrt {e \,x^{2}+d}}{x}-\frac {\left (a b d e +2 d^{2} a c -b^{2} d^{2}+\sqrt {-d^{2} \left (4 a c -b^{2}\right )}\, a e -\sqrt {-d^{2} \left (4 a c -b^{2}\right )}\, b d \right ) \sqrt {2}\, \arctan \left (\frac {a \sqrt {e \,x^{2}+d}\, \sqrt {2}}{x \sqrt {\left (-2 a e +b d +\sqrt {-d^{2} \left (4 a c -b^{2}\right )}\right ) a}}\right )}{2 \sqrt {-d^{2} \left (4 a c -b^{2}\right )}\, \sqrt {\left (-2 a e +b d +\sqrt {-d^{2} \left (4 a c -b^{2}\right )}\right ) a}}+\frac {\left (-a b d e -2 d^{2} a c +b^{2} d^{2}+\sqrt {-d^{2} \left (4 a c -b^{2}\right )}\, a e -\sqrt {-d^{2} \left (4 a c -b^{2}\right )}\, b d \right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {a \sqrt {e \,x^{2}+d}\, \sqrt {2}}{x \sqrt {\left (2 a e -b d +\sqrt {-d^{2} \left (4 a c -b^{2}\right )}\right ) a}}\right )}{2 \sqrt {-d^{2} \left (4 a c -b^{2}\right )}\, \sqrt {\left (2 a e -b d +\sqrt {-d^{2} \left (4 a c -b^{2}\right )}\right ) a}}}{a}\) \(342\)
default \(\frac {-\frac {\left (e \,x^{2}+d \right )^{\frac {3}{2}}}{d x}+\frac {2 e \left (\frac {x \sqrt {e \,x^{2}+d}}{2}+\frac {d \ln \left (x \sqrt {e}+\sqrt {e \,x^{2}+d}\right )}{2 \sqrt {e}}\right )}{d}}{a}+\frac {\sqrt {\left (-2 a e +b d +\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) a}\, \sqrt {2}\, \left (\left (a e -b d \right ) \sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}+\left (-2 a c +b^{2}\right ) d^{2}-a b d e \right ) \operatorname {arctanh}\left (\frac {a \sqrt {e \,x^{2}+d}\, \sqrt {2}}{x \sqrt {\left (2 a e -b d +\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) a}}\right )-\left (\sqrt {2}\, \left (\left (a e -b d \right ) \sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}+\left (\left (2 a c -b^{2}\right ) d +a b e \right ) d \right ) \arctan \left (\frac {a \sqrt {e \,x^{2}+d}\, \sqrt {2}}{x \sqrt {\left (-2 a e +b d +\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) a}}\right )+2 \sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\, \operatorname {arctanh}\left (\frac {\sqrt {e \,x^{2}+d}}{x \sqrt {e}}\right ) \sqrt {\left (-2 a e +b d +\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) a}\, \sqrt {e}\right ) \sqrt {\left (2 a e -b d +\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) a}}{2 a \sqrt {\left (-2 a e +b d +\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) a}\, \sqrt {\left (2 a e -b d +\sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}\right ) a}\, \sqrt {-4 d^{2} \left (a c -\frac {b^{2}}{4}\right )}}\) \(460\)

input
int((e*x^2+d)^(1/2)/x^2/(c*x^4+b*x^2+a),x,method=_RETURNVERBOSE)
 
output
-(e*x^2+d)^(1/2)/a/x-1/2*2^(1/2)/a/(-d^2*(4*a*c-b^2))^(1/2)*((a*b*d*e+2*d^ 
2*a*c-b^2*d^2+(-d^2*(4*a*c-b^2))^(1/2)*a*e-(-d^2*(4*a*c-b^2))^(1/2)*b*d)/( 
(-2*a*e+b*d+(-d^2*(4*a*c-b^2))^(1/2))*a)^(1/2)*arctan(a/x*(e*x^2+d)^(1/2)* 
2^(1/2)/((-2*a*e+b*d+(-d^2*(4*a*c-b^2))^(1/2))*a)^(1/2))-(-a*b*d*e-2*d^2*a 
*c+b^2*d^2+(-d^2*(4*a*c-b^2))^(1/2)*a*e-(-d^2*(4*a*c-b^2))^(1/2)*b*d)/((2* 
a*e-b*d+(-d^2*(4*a*c-b^2))^(1/2))*a)^(1/2)*arctanh(a/x*(e*x^2+d)^(1/2)*2^( 
1/2)/((2*a*e-b*d+(-d^2*(4*a*c-b^2))^(1/2))*a)^(1/2)))
 
3.4.64.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2402 vs. \(2 (249) = 498\).

Time = 1.63 (sec) , antiderivative size = 2402, normalized size of antiderivative = 8.25 \[ \int \frac {\sqrt {d+e x^2}}{x^2 \left (a+b x^2+c x^4\right )} \, dx=\text {Too large to display} \]

input
integrate((e*x^2+d)^(1/2)/x^2/(c*x^4+b*x^2+a),x, algorithm="fricas")
 
output
-1/4*(sqrt(1/2)*a*x*sqrt(-((b^3 - 3*a*b*c)*d - (a*b^2 - 2*a^2*c)*e + (a^3* 
b^2 - 4*a^4*c)*sqrt((a^2*b^2*e^2 + (b^4 - 2*a*b^2*c + a^2*c^2)*d^2 - 2*(a* 
b^3 - a^2*b*c)*d*e)/(a^6*b^2 - 4*a^7*c)))/(a^3*b^2 - 4*a^4*c))*log((2*a^2* 
b*c*d*e + (a^3*b^2*c - 4*a^4*c^2)*d*x^2*sqrt((a^2*b^2*e^2 + (b^4 - 2*a*b^2 
*c + a^2*c^2)*d^2 - 2*(a*b^3 - a^2*b*c)*d*e)/(a^6*b^2 - 4*a^7*c)) - 2*(a*b 
^2*c - a^2*c^2)*d^2 + (4*a^2*b*c*e^2 + (b^3*c - a*b*c^2)*d^2 - (5*a*b^2*c 
- 4*a^2*c^2)*d*e)*x^2 + 2*sqrt(1/2)*sqrt(e*x^2 + d)*((a^4*b^3 - 4*a^5*b*c) 
*x*sqrt((a^2*b^2*e^2 + (b^4 - 2*a*b^2*c + a^2*c^2)*d^2 - 2*(a*b^3 - a^2*b* 
c)*d*e)/(a^6*b^2 - 4*a^7*c)) - ((a*b^4 - 5*a^2*b^2*c + 4*a^3*c^2)*d - (a^2 
*b^3 - 4*a^3*b*c)*e)*x)*sqrt(-((b^3 - 3*a*b*c)*d - (a*b^2 - 2*a^2*c)*e + ( 
a^3*b^2 - 4*a^4*c)*sqrt((a^2*b^2*e^2 + (b^4 - 2*a*b^2*c + a^2*c^2)*d^2 - 2 
*(a*b^3 - a^2*b*c)*d*e)/(a^6*b^2 - 4*a^7*c)))/(a^3*b^2 - 4*a^4*c)))/x^2) - 
 sqrt(1/2)*a*x*sqrt(-((b^3 - 3*a*b*c)*d - (a*b^2 - 2*a^2*c)*e + (a^3*b^2 - 
 4*a^4*c)*sqrt((a^2*b^2*e^2 + (b^4 - 2*a*b^2*c + a^2*c^2)*d^2 - 2*(a*b^3 - 
 a^2*b*c)*d*e)/(a^6*b^2 - 4*a^7*c)))/(a^3*b^2 - 4*a^4*c))*log((2*a^2*b*c*d 
*e + (a^3*b^2*c - 4*a^4*c^2)*d*x^2*sqrt((a^2*b^2*e^2 + (b^4 - 2*a*b^2*c + 
a^2*c^2)*d^2 - 2*(a*b^3 - a^2*b*c)*d*e)/(a^6*b^2 - 4*a^7*c)) - 2*(a*b^2*c 
- a^2*c^2)*d^2 + (4*a^2*b*c*e^2 + (b^3*c - a*b*c^2)*d^2 - (5*a*b^2*c - 4*a 
^2*c^2)*d*e)*x^2 - 2*sqrt(1/2)*sqrt(e*x^2 + d)*((a^4*b^3 - 4*a^5*b*c)*x*sq 
rt((a^2*b^2*e^2 + (b^4 - 2*a*b^2*c + a^2*c^2)*d^2 - 2*(a*b^3 - a^2*b*c)...
 
3.4.64.6 Sympy [F]

\[ \int \frac {\sqrt {d+e x^2}}{x^2 \left (a+b x^2+c x^4\right )} \, dx=\int \frac {\sqrt {d + e x^{2}}}{x^{2} \left (a + b x^{2} + c x^{4}\right )}\, dx \]

input
integrate((e*x**2+d)**(1/2)/x**2/(c*x**4+b*x**2+a),x)
 
output
Integral(sqrt(d + e*x**2)/(x**2*(a + b*x**2 + c*x**4)), x)
 
3.4.64.7 Maxima [F]

\[ \int \frac {\sqrt {d+e x^2}}{x^2 \left (a+b x^2+c x^4\right )} \, dx=\int { \frac {\sqrt {e x^{2} + d}}{{\left (c x^{4} + b x^{2} + a\right )} x^{2}} \,d x } \]

input
integrate((e*x^2+d)^(1/2)/x^2/(c*x^4+b*x^2+a),x, algorithm="maxima")
 
output
integrate(sqrt(e*x^2 + d)/((c*x^4 + b*x^2 + a)*x^2), x)
 
3.4.64.8 Giac [F(-1)]

Timed out. \[ \int \frac {\sqrt {d+e x^2}}{x^2 \left (a+b x^2+c x^4\right )} \, dx=\text {Timed out} \]

input
integrate((e*x^2+d)^(1/2)/x^2/(c*x^4+b*x^2+a),x, algorithm="giac")
 
output
Timed out
 
3.4.64.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {d+e x^2}}{x^2 \left (a+b x^2+c x^4\right )} \, dx=\int \frac {\sqrt {e\,x^2+d}}{x^2\,\left (c\,x^4+b\,x^2+a\right )} \,d x \]

input
int((d + e*x^2)^(1/2)/(x^2*(a + b*x^2 + c*x^4)),x)
 
output
int((d + e*x^2)^(1/2)/(x^2*(a + b*x^2 + c*x^4)), x)